Чего не могут ЭВМ


Эпистемологическое допущение - стр. 18


"Хотя это одно из полезных представлений, тем не менее столь же правильно будет сказать, что вычислительная машина есть нечто иное, как ансамбль элементов, служащих для осуществления символьно-ассоциативных и информационно-управляемых процессов, и что программы представляют собой не что иное, как сети взаимосвязанных процессов по формулированию целей и оценке результатов в терминах "средств и целей". В действительности последняя трактовка гораздо предпочтительнее, поскольку она несколько сглаживает "эгоистическую" тенденцию человеческого мышления, склонного считать, что в случае машины все возможные будущие следствия абсолютно ясны"**. .

Но М. Минский лишь наполовину отдает себе отчет о трудностях, которые возникают в связи с тем, что машина должна оперировать четко определенными, независимыми элементами. Может быть, действительно правила более высоких порядков можно сформулировать так, чтобы тот факт, что машина составлена из триггеров, никак не отразился на структурной схеме программы, т. е. на информационном уровне. (На этом уровне, как мы видели в двух предыдущих главах, недоразумения возникают скорее в связи с допущением четких правил, применимых во всех случаях жизни, чем в связи с тем, что эти правила должны обязательно представлять собой последовательность операций над двоичными числами.) Триггеры становятся проблемой только тогда, когда мы переходим к рассмотрению способов

* М. Мinsky: Introduction.ln: M. Minsky. (ed).K Semantic Information Processing, p. 11.

** Ibid.

167

представления информации, подлежащей введению в машину*. Мы видели, что А.Ньюэлл вполне откровенно описывает GPS (программу, которая на информационном уровне совершенно оправданно может быть описана в терминах взаимосвязанных целей и соотношений между "средствами" и "конечными состояниями") как "программу, реализующую задачу восприятия внешнего мира, который описан в терминах дискретных объектов"**. Именно эти дискретные объекты должны служить "наполнением" для триггеров или, для этой же цели, должны быть разложены на дискретные элементы следующего уровня. Любая программа цифровой машины воспринимает необходимые ей данные только в дискретной форме.

При таком подходе возникает специфическая проблема - точнее говоря, этот подход сам ее и создает- проблема точного определения характера всех тех вопросов, которые связаны с введением в машину информации. В нейтральной формулировке проблема сводится к следующему: как мы видели, для того чтобы понять то или иное высказывание, структурировать ту или иную задачу или распознать тот или иной образ, вычислительная машина должна выбрать требующуюся информацию и интерпретировать ее в терминах некоторого контекста. Но как сообщить машине этот контекст? Лучше всего эта проблема сформулирована {все в той же нейтральной форме) в обзоре работ по распознаванию рукописного текста, представленном М.Иденом:

"Читающий может восстановить ее (букву написанного неразборчиво текста.- Х.Д) на основании имеющихся у него сведений о грамматике данного языка, по смыслу текста, который ему удалось прочесть, по общему содержанию рукописи и, быть может, исходя из соображений о душевном состоянии ее автора. Но, увы, пока еще мы совершенно не знаем, как вложить все эти знания о миpe и его процессах в программу вычислительной машины"***.

Здесь М.Иден весьма благоразумно ничего не говорит о том,

* Разумеется, на некотором уровне использование триггеров диктуется лишь соображениями технического удобства, также как и двоичная система, к которой они приводят. Всякая машина с конечным числом состояний, будь то машина, использующая троичные элементы, шестерни с десятью зубцами или элементы с любым другим набором дискретных состояний, вынудила бы нас принять то же самое онтологическое допущение. Ведь на более глубоком уровне использование триггеров выражает тот факт, что цифровая вычислительная машина представляет собой логическую машину, в которой реализуемые операции могут быть заданы в виде таблиц истинности. Таким образом, любая информация, которая может быть введена в машину, допускает представление в виде набора высказываний, для которых определены значения "истина" и "ложь", "0" и "1"

** A.Newell, Learning, Generality and Problem Solving. The RAND Corporation, RM-3285*1-PR, February 1963, p. 17.




Начало  Назад  Вперед



Книжный магазин