Чего не могут ЭВМ


Критика искусственного разума - стр. 56


"Проблема подбора способа дедукции полезных заключений из большого массива высказываний (то есть проблема соотнесения различных методов с различными типами задач) ставит новую задачу поиска. Логическое исследование должно проводиться только по тем данным, которые

* Е.Неаrst. Psychology Across the Chessboard,- Psychology Today, 1967, June, p. 32.

** M.Minsky,Descriptive Languages and Problem Solving.- In: Semantic Information Processing, p. 420.

64

вероятнее всего имеют отношение к текущей задаче. Малоправдоподобно, чтобы эта функция отбора была полностью задана с самого начала. Она должна совершенствоваться по мере накопления данных в ходе эксперимента"*.

Однако до сих пор никто даже не попытался гипотетически описать, каким образом машина могла бы осуществлять эту операцию отбора или как следует ее запрограммировать, чтобы она могла научиться этому, поскольку иначе никакое обучение на основе прошлого опыта невозможно.

Оценивая работы, выполненные после выхода в свет труда "Вычислительные машины и мышление", Э.Фейгенбаум отмечает бросающееся в глаза отсутствие обучающихся программ:

"До сих пор в области ИИ значение машинного обучения для решения проблем осознавалось весьма слабо. Единственную, по существу, за много лет заслуживающую упоминания работу представляет известная шашечная программа Сэмюэля и использованная в ней процедура обучения, (Большой интерес в свое время вызвала предложенная Ньюэллом, Шоу и Саймоном система обучения GPS , однако она осталась нереализованной.) Как это ни удивительно, и в наши дни ситуация остается прежней"**.




Начало  Назад  Вперед



Книжный магазин